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SUMMARY 

The solution of the full non-linear set of discrete fluid flow equations is usually obtained by solving a sequence 
of linear equations. The type of linearization used can significantly affect the rate of convergence of the 
sequence to the final solution. The first objective of the present study was to determine the extent to which a 
full Newton-Raphson linearization of all non-linear terms enhances convergence relative to  that obtained 
using the ‘standard’ incompressible flow linearization. A direct solution procedure was employed in this 
evaluation. It was found that the full linearization enhances convergence, especially when grid curvature 
effects are important. 

The direct solution of the linear set is uneconomical. The second objective of the paper was to  show how the 
equations can be effectively solved by an iterative scheme, based on a coupled-equation line solver, which 
implicitly retains all the inter-equation couplings. This solution method was found to  be competitive with the 
highly refined segregated solution methods that represent the current state-of-the-art. 
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INTRODUCTION 

The solutions to complex fluid flow problems are usually obtained by solving the discrete 
(algebraic) equation analogues of the full equations of motion. Like the underlying differential 
equations, the discrete equations are non-linear. In order to solve these equations using standard 
methods the non-linear terms are linearized, the resulting linear equation set is solved, the 
coefficients are updated, and this ‘coefficient update cycle’ repeated until the final solution is 
obtained that satisfies the non-linear equations. This final solution is referred to herein as the 
‘steady-state solution’. 

The rate at which the sequence of solutions to the linear equations converges to the steady-state 
solution depends in part on the accuracy of the linearization employed. 

In compressible flow analysis, a Newton-Raphson linearization of the non-linear terms is often 
used. Excellent discussions of the linearization, and of the solution of the resulting linear, coupled 
equation sets, have been provided by Beam and Warming,’,’ Briley and McDonald3s4 and 
MacCormick.’ 

For the limiting case of isothermal and incompressible flow, there are fewer non-linearities in the 
equations of motion, and those that do appear are usually not subjected to a full Newton-Raphson 
linearization. As a result of this special treatment, the linear momentum equations become 
decoupled so that, for a given pressure, each momentum equation can be solved independently 
from the others. The widely used ‘segregated’ solution methods6*’ for incompressible flows depend 
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heavily on this decoupling. Clearly the linearization required to obtain the decoupling is crude, so 
that more coefficient-update cycles will usually be required to converge to the solution of the non- 
linear set. The question is, under what conditions do the benefits that accrue from the simple 
segregated formulation compensate for the increased number of coefficient-update cycles? The 
purpose of the present paper is to provide evidence relating to this question by addressing two 
separate smaller, but related issues. 

The first issue concerns the effect of linearization on the rate of convergence of the sequence of 
linear solutions to the steady-state solution. The present paper presents detailed results for two 
problems, and briefly reports on other problems that have been solved using both the ‘standard’ 
linearization, that leads to the segregated equations, and full Newton-Raphson linearization, that 
leads to fully coupled equations. Since this issue does not involve the solution economy, all 
solutions were obtained by direct inversion of the full set of linear equations. 

The second issue concerns the cost of obtaining a solution, to prescribed accuracy, to the non- 
linear equations. The solution methods employed to solve both the segregated and coupled sets 
have a major impact on the solution costs and because such methods are constantly being 
improved, a full evaluation is not possible. Of the available methods for iterative solution of the 
coupled 

In the first section of the paper the equations of motion are presented in orthogonal curvilinear 
co-ordinates, linearization is discussed, and the discrete equations are presented. The next major 
section describes the direct solution method, and presents results relating to the rate of 
convergence of the linear-solution sequence. 

The second section of the paper extends the CELS method to permit implicit treatment of all 
inter-equation couplings. The two problems are then re-solved and the solution times to reach a 
prescribed tolerance are compared to those for the SIMPLEC7 segregated solution method. 

the CELS (coupled equation line solver) method of Galpin et a/.’ was used. 

DERIVATION OF THE DISCRETE LINEARIZED EQUATIONS OF MOTION 

Differential equations of motion 

laminar flow, written in general orthogonal curvilinear co-ordinates are’’ 
The governing differential equations of motion for two dimensional, incompressible, isothermal, 

I I1 
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The stresses, 0, are related to the velocities via the following relations for a Newtonian fluid: 

[ 1 a v  u ah,] 
0,,=2p --+-- , 

h, ax, h,h, ax, 

(4) 

In these equations u and u are the velocity components in the xl- and x,-directions, respectively, 
and h, and h, are the metrics in these directions. Other variables are defined in the Nomenclature 
section. 

Examination of equations (1)-(4) reveals several linear and non-linear inter-equation couplings. 
The linear continuity equation imposes a strong pressure-velocity coupling (p-V coupling). 
Substitution of the stresses into the momentum equations result in an apparently strong inter- 
momentum equation coupling, but application of mass conservation eliminates this coupling 
almost entirely. The advection terms, denoted by I in equations (2) and (3), and acceleration terms, 
denoted by 11, are non-linear and impose additional intra- and inter-momentum equation 
couplings. 

Discrete equations of motion 

To derive the discrete equations of motion the solution domain is first subdivided into 
orthogonal control volumes. Pressure nodes are located at the centres of these volumes, as shown 
in Figure 1. Velocity nodes (Figures 1 and 2) are located in velocity control volumes which are 
staggered between the pressure nodes, as originally proposed by Harlow and Welch." The 
derivation of the algebraic equations for mass and momentum is now outlined, focusing on the 
treatment of the non-linear terms; details of the term-by-term integrations are found elsewhere. l Z  

Discrete continuity equation. The differential continuity equation is integrated over a pressure 
control volume to obtain a discrete continuity equation. This algebraic equation is linear, for 

LSCALAR CONTROL 
I 

VOLUME 

Figure 1. General orthogonal grid layout showing the location of various dependent variables around a pressure 
(continuity) control volume 
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Figure 2. General orthogonal grid layout showing the location of the nodal point and the face-point velocities around a u- 
momentum control volume 

incompressible flow, and can be immediately written in terms of nodal velocities (Figure 1) as 

A y u ,  + A y u ,  + A y u P  + A p ,  = 0, ( 5 )  
where 
face. 

for example, represents the mass flow leaving the control volume through its east 

Discrete momentum equations. Integration of the u-momentum equation over its control volume 
is simplified by the stress-flux formulation” where the stresses are divided into active and lagged 
(previous time level) components. Term-by-term integration then gives an implicit discrete u- 
momentum equation in terms of nodal point variables (indicated with upper case subscripts) and 
face point variables (values at faces of the control volume indicated with lower case subscripts, 
Figure 2) of the form 

Ia Ib IIa IIb IIIa IIIb 
M 
At 
-(up - Id;) + pAeueue - PAwUwUw + pA,v,u, - pA,u,u, + p(A ,  - A,)upvt: - p ( A e  - A , ) U t : U t :  

Terms 1-111 contain non-linear products of u and u. Terms 1-11 are the ‘advection’ terms, and terms 
111 are the ‘acceleration’ terms that vanish when the control volumes become Cartesian. 

To obtain the final form of the discrete linear u-momentum equation, all non-linear terms must 
be linearized and all face point velocities must be approximated in terms of nodal velocities. Two 
possible linearizations are examined, followed by brief discussions of the discretization and 
relaxation schemes used here. In the discussions that follow, variables denoted by superscript 0 are 
evaluated at to, the solution from the most recent time level or coefficient update iteration. Such 
variables are referred to as ‘fixed’ or ‘lagged’. Variables without this superscript are evaluated at the 
to + At time level, and are therefore referred to as ‘active’. 
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(i) Standard linearization: the 'standard' incompressible flow linearization fixes one or both 
velocities in each product. In the advection terms, the velocities associated with the mass flow (or 
the 'advecting' velocity u in Term I and u in Term 11) are fixed while the other ('advected') velocity in 
each product is kept active. Acceleration term IIIa is linearized by fixing both up and u:, or by fixing 
u; only, whereas both u: velocities are fixed in term IIIb. As discussed earlier, these linearizations 
uncouple the u-momentum equation from the u-momentum equation. If the u-momentum 
equation is linearized in a similar fashion, the resulting uncoupled momentum equation (UME) set 
is indirectly coupled only through pressure. 

(ii) Newton-Raphson linearization: the momentum equations are more directly coupled when a 
Newton-Raphson linearization of all non-linear terms is used (i.e. a Taylor series expansion that 
ignores terms beyond first order). A classical Newton-Raphson linearization of the non-linear 
product uu, for example, is 

a a 
uu x uouo + -(uu)"u - uO)  + - (uu)O(u - U O )  

au au 
= uou + uou - uouo. 

The leading term, uou, is recognized as the standard linearization described above. 
All of the non-linear terms in equation (6)  can be linearized in the manner demonstrated in 

equation (7a), but care must be taken in anticipation of the eventual use of iterative linear solution 
methods. In particular, the introduction of negative coefficients in the linear algebraic momentum 
equations should be avoided and the diagonal dominance of each linear equation should be 
preserved, to ensure rapid convergence of iterative solvers. For example, for the u-momentum 
equation special consideration must be given when linearizing terms I and IIIa. 

Consider the classical Newton-Raphson linearization of term Ia, written to emphasize the 
different roles of the advecting and advected velocities as 

pAu,u, = (pAu,)u, = m,u, x m:u, + meu: - riz:u,". (7b) 

In the present application, riz, is calculated as the average of the mass flows through the adjacent 
faces of the scalar control volumes 

me =+p(AEuE + Awup), (74 

where, for example, A ,  is the area of the east face of the scalar control volume. Such an evaluation 
ensures that mass is conserved over the u-control volume, but implies that the advecting and 
advected velocities are different. If equation (7c) is substituted into equation (7b), large negative 
coefficients may result. This situation is avoided by assuming, for the purposes of the linearization 
only, that the advected and advecting velocities are equal, so that 

meue x 2m34, - m:u:. ( 7 4  

This requirement is then dropped when riz, and u, are evaluated. Although this practice ensures 
that no negative coefficients are introduced, the linearization is no longer truly second order 
accurate. Similar considerations apply to term Ib. 

Care is also taken in the Newton-Raphson linearization of term IIIa to ensure that the term's 
contribution to the total coefficient on up increases the diagonal dominance of the linear equation. 

(iii) Face point velocity approximations: independent of which of the standard or Newton- 
Raphson linearization are employed, the face point velocities must be approximated in terms of the 
nodal velocities. In this work, the advected velocities were approximated by a simple upstream 
weighted scheme.I3 The results and conclusions of the present work, however, apply in principle to 
higher spatially accurate discretization schemes. 
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(iv) Relaxation: rather than follow a transient evolution, a distorted transient (or iterative) 
method was employed which introduced the relaxation parameter E7,14 into the terms in equation 
(6) which contain At, by making. the replacement 

At = EAt,,,, 

where At,,, is the maximum time step allowable if the simplest explicit transient solution method 
were to be used to integrate the time-dependent momentum equations. The physical interpretation 
and advantages of the E-factor formulation are presented elsewhere.' It is sufficient to note here 
that such relaxation is often required to accelerate convergence, or prevent divergence, of the 
coefficient-update cycle, and that E-values significantly in excess of unity are required to justify the 
increased overhead incurred when solving the algebraic momentum equations by implicit, rather 
than explicit methods. 

(v) Final discrete linear momentum equations: when the Newton-Raphson linearizations above 
are employed, together with the noted discretization scheme and relaxation, the final form of the 
discrete linear u-momentum equation is 

The locations of the nodal point variables are shown in Figure 2, and the coefficients are presented 
in the Appendix. 

The discrete u-momentum equation is obtained by employing similar approximations and 
Newton-Raphson linearization of all its non-linear terms, as discussed for the u-momentum 
equation, and is of the form 

A>"Uij = A" E " ui+ 1 j  + A;;;"Ui- I j  + A;;."Uij+ 1 + A y v i j -  1 + A;;.Eu,,+ 1 

+ AI;.#ui- 1 j +  1 + A:$uij + A2iui- 1 j  + A;; .PPi j+  1 + A y p i j  + B*". (9) 

Equations (8) and (9) form a coupled momentum equation (CME) set that possess direct inter- 
momentum equation couplings through the A"+ and A"," Coefficients. The CME set cannot be 
solved in a segregated manner. 

EFFECT OF LINEARIZATION O N  CONVERGENCE T O  
THE NON-LINEAR SOLUTION 

The linear equation set is comprised of one continuity equation, like equation (9, for each pressure 
control volume, and one u- and u-momentum equation, like equations (8) and (9), for each u- and u- 
control volume, respectively. The formation of the coefficients together with the solution of this set 
comprises one coefficient update cycle. As described in the Introduction, the purpose of this section 
is to establish the effect of linearization on the convergence of the coefficient update cycle. In this 
section each solution to the linear set was obtained by direct solution of the full equation set. 

Direct solution of linear equation set 

The direct linear solution is implemented by first transforming each continuity equation into an 
equation for pressure. Following the procedure of Zedan and S~hneider , '~  the velocities in the 
continuity equation ( 5 )  are replaced by their respective momentum equations (8) and (9), thereby 
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forming a diagonally dominant pressure equation of the form 

ApPpi j  = zA:bPp,,b -I- ~ A : ~ U , , b  -I- zAf lU , ,b  -I- B p ,  

415 

where pij is expressed in terms of its four pressure, eight u-velocity and eight u-velocity neighbours. 
The fully coupled linear equation set, equations (8)-(lo), is solved directly to give the nodal 

values of u, u and p ,  using an LU decomposition algorithm. Both the CME and the UME sets were 
solved in this manner by supplying the appropriate linear equation coefficients to the direct solver. 

Test problems and procedure 

Several flows have been calculated using this direct solver. Only two representative test flows are 
present here: flow of air over a rearward facing step discretized using a 27 x 17 Cartessian grid 
(Figure 3A), and a similar flow on a 27 x 17 curvilinear grid (Figure 4A). These are referred to 
hereafter as the Cartesian and curvilinear test problems, respectively. The computed flow fields for 
these problems are presented in Figures 3B and 4B. 

The steady-state predictions of each of the test problems were determined by repeating the 
coefficient update cycle until changes in the dependent variables between successive linear 
solutions were of the order of machine zero. These steady-state solutions are referred to as ‘exact’ 
solutions and are, to machine accuracy, the same, independent of whether the UME or CME set is 
employed. 

The problems are then re-solved, with all variables initialized to zero, using both the UME and 
the CME sets. The r.m.s. error of all variables from the exact solution, E,,,, is determined after each 

H = 0.0381 rn 
V i n  = 0.1 rn/s 

- .  

A 

B 
Figure 3. Grid and boundary conditions for the Cartesian test problem (A), and the calculated velocity vectors for air 

flowing over the step (B) 
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Vi n 

IOH 

H = 0.0381 m 
Vin = 0.1 m/s 

A 

B 
Figure 4. Grid and boundary conditions for the curvilinear test problem (A), and the calculated velocity vectors for air 

flowing over the step (B) 

coefficient update cycle. Typically the pressure solution is more sensitive to change than the 
velocity solution, and the r.m.s. error of pressure from the exact solution, &frns, is a sensitive 
indicator of convergence. The values of ~f,,,, plotted as a function of the count on the coefficient 
update cycle provide a qualitative illustration of the convergence behaviour for each linearization 
method. 

To provide a single number to characterize the convergence rate, the number of coefficient 
updates required to compute all variables to within em,, of their exact values are also reported. Here 
cmax is defined as the maximum deviation of the dependent variables from their steady values 
normalized by the steady-state range ofeach variable. A value of E,,, = was specified for both 
the test problems. At this tolerance calculated variables are well above machine round-off, but the 
tolerance is sufficient to demonstrate the convergence behaviour. 

Results 

Cartesian test problem. Qualitatively the solution convergence behaviour observed for the 
Cartesian test problem, independent of the linearization used and of the degree of relaxation, is 
smooth and monotonic (Figure 5A). The difference in convergence rates observed when solving the 
CME and UME sets is small during the initial coefficient updates. As the steady-state solution is 
approached, however, the convergence rate attained solving the CME set becomes marginally 
faster than that for the UME set. 

of the exact 
solution are plotted in Figure 5B as a function of the relaxation, E .  The CME set is seen to converge 

The number of coefficient updates required to compute all variables to within 
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Figure 5. RMS error in the pressure solution, E ; ~ ,  versus the coefficient update number (A), and the total number of 
coefficient updates required for all variables to converge within E,,, = of their exact values versus the relaxation, E (B), 

comparing the UME and CME sets solved directly for the Cartesian test problem 

only marginally faster than the UME set for all values of E,  the largest difference occurring at 
intermediate values of E.  The Newton-Raphson linearization of the non-linear terms in the 
Cartesian momentum equations (the advection terms) thus does not significantly accelerate or 
improve convergence of the coefficient update cycle. This has been observed for several other 
Cartesian test problems as well. 

Curuilinear test problem. The convergence behaviour of the curvilinear test problem is illustrated 
in Figure 6A. For E = 2, both the CME and the UME sets converge smoothly and monotonically. 
For E = 10, both sets converge equally well up to the 13th coefficient update, after which the UME 
set wanders slightly and converges at a slower rate. For E = 100, the CME set is notably faster and 
more stable than the UME set, resulting in a significant reduction in the number of Coefficient 
updates required. 

Figure 6B reveals that the CME set requires consistently fewer coefficient updates to converge to 
within E,,, than the UME set, and that the CME set is less sensitive to the value of E .  The 
convergence rate is optimal at E x  10, degrading for both methods for all other values of E,  a 
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UME- DIRECT 
CME - DIRECT too 

0 20 40 E 
COEFF. UPDATE NUMBER 

A 

1 

UME-DIRECT / --- 
- CME-DIRECT / 

\ / L- ‘c/ 

/ 
/ 

/ 
/ -- 

I I l l  I I 
2 5 10 20 50 IOC 

E 

B 

Figure 6. RMS error in the pressure solution, E:,,,~, versus the coefficient update number (A), and the total number of 
coefficient updates required for all variables to converge within E,,, = of their exact values versus the relaxation, E (B), 

comparing the UME and CME sets solved directly for the curvilinear test problem 

behaviour not observed for the Cartesian test problem. Couplings exist between the curvilinear 
momentum equations through the acceleration terms, as well as the advection terms, for this flow 
and grid. The Newton-Raphson linearization of these terms is responsible for the improved 
convergence behaviour of the CME set, as each linear solution accounts implicitly for the inter- 
momentum equation couplings. The convergence behaviour of the curvilinear problem thus 
depends strongly both on the method of linearization and on the degree of relaxation used. 

Note on consistency. Although not presented, similar calculations were made for these and other 
test problems employing a Newton-Raphson linearization only for selected non-linear terms (e.g. 
only for advection term Ia, or only for acceleration term IIIb). The convergence behaviour was 
often much worse than for the case where all non-linear terms were linearized in the usual 
approach, and was never as good as the case where all non-linear terms were represented by a 
Newton-Raphson linearization. Further tests of inconsistent term-by-term linearizations were 
thus abandoned. 
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Note on the early stages ofthe solution. It has been observed for a few test problems, not presented 
here, that solving the fully linearized momentum equation set gives poor performance during the 
very early stages of the solution. This is not surprising, as the Newton-Raphson linearization is 
strictly valid only when the solution is ‘near’ the correct solution. All flows computed to date using 
the fully linearized momentum equations were started with the solution fields set to zero in 
order to allow for a clear comparison of methods. However, it would be more desirable, in general, 
to solve using the ‘standard’ incompressible flow linearizations until the gross features of the flow 
are established (i.e. for the first 3-5 coefficient update cycles, starting from zero fields), and then 
solve using the full linearizations to accelerate convergence. 

Note on order ofconvergence. The solution of the CME set for the two problems just considered, 
as well as for several other problems studied, leads to linear convergence. Ideally a Newton- 
Raphson linearization would lead to quadratic convergence. Quadratic convergence is in fact 
obtained if equations such as (7b) are used, if there is no under-relaxation (E = co), and if the factors 
associated with upstream weighting are either specified constants or are included in the Newton- 
Raphson linearization. These algebraic equations are, however, ill suited for iterative solution 
methods, and were not considered further. 

Summary of direct solution results 

Based on the results of these and other test problems, the Newton-Raphson linearization of the 
non-linear terms in the momentum equations is desirable in that: (1) convergence is smooth and 
monotonic, (2) convergence is accelerated for all values of E and (3) the convergence rate is less 
sensitive to the relaxation used (i.e. the value of E used). Further, it was found that the linearizations 
used in each equation must be consistent on a term-by-term basis. The direct solver results justify 
an investigation of the application of an iterative linear solver for the CME set, focusing on the 
possibility of reducing the total computational effort. 

ITERATIVE SOLUTION OF THE COUPLED EQUATIONS 

Iterative solution method 

An iterative method based on a coupled equation line solver (CELS) was presented previously 
for the solution of the UME set. Comparisons with state-of-the-art segregated methods (e.g. 
SIMPLER6 and SIMPLEC’ indicated that CELS was competitive in terms of both comput- 
ational effort and simplicity. The CELS method implicitly treats the p -  I/ coupling so that solutions 
to the linear set are obtained for a very wide range of E-values. 

The CELS solution method can be easily extended to account for coupled momentum 
equations, making it an attractive solver for the CME set. Attention is now turned to this 
derivation. 

The CELS solution method. The CELS solution method simultaneously solves the momentum 
and continuity equations along a ‘line’ of control volumes. The values of u, u and p are improved by 
successively solving line-by-line in each co-ordinate direction over the entire domain (sweeping) 
until the desired degree of satisfaction of the linear equation set is obtained. 

As in the original derivation of CELS, the variables behind and ahead of the current line are fixed 
at their most recent estimates (from the previous sweep). Along a line of constant j equations (5),  (8) 
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and (9) become 

A:"ui = A";ui+ + A Y u i -  + A$;U,+ + A;&oi + A$Ppi+ + A;t;Ppi + b", (11) 

A?"ui = A;"ui+ + A v o i -  + A?jui + A;+t+ + A;J'pi + b", (12) 

0 = A;"ui + A V u i -  + A:"oi + b', (13) 

b" = B" + A$"u$+ + A;*"u$- + A;$'u~*, lj- + A ; ~ u $ -  (1 la) 

b" = B" + AI;."u$+ + A?"u$- + A$:u$+ + A$&u:- lj+ + AI;."p$+ 1, ( 124  

b' = Ag9"o$- 1. (134 

where the new source terms are 

The subscript j is implied on all terms and variables if it does not appear explicitly, and 
superscript * denotes the most recent estimate. 

The o-momentum equation (12), is rearranged into a derived equation for p i  in terms of u- 
velocities by making three substitutions of the continuity equation (13), to eliminate the u- 
velocities. The u-velocities in the u-momentum equation (1 l), are also eliminated using continuity, 
and finally the pressures p i +  and pi are eliminated from this u-momentum equation using the 
derived pressure equation. The resulting penta-diagonal equation for ui is efficiently solved using a 
penta-diagonal solution algorithm.' The pressures and u-velocities can then be immediately 
calculated, yielding the exact simultaneous solution of equations (1 1)-( 13). 

The following recommendations' were also used to enhance the convergence of CELS: block 
pressure correction was used after each sweep, relaxation was introduced within the linear solver 
and a residual reduction criterion was used to terminate the sweep cycle. 

The above proposed extension of CELS to incorporate the CME set was verified by repeating 
the calculations of several test problems. A tight residual reduction criterion was enforced for each 
solution of the linear equation set, solving each essentially to machine round-off. The numerical 
results compared exactly (to round-off) to those obtained when each linear set was solved directly. 

If the residual reduction criterion is now made much smaller, the computational effort expended 
on each linear equation set reduces drastically at the possible expense of requiring additional 
coefficient updates to converge to the steady-state. The total computational effort to solve the non- 
linear equations can be minimized in this manner; the minimum computational effort for the two 
test problems is given below. 

Test problems revisited 

The flows for the Cartesian and curvilinear test problems described earlier were recalculated, 
comparing the relative performance of the CELS method applied to the CME coefficients (CELS- 
CME), the CELS method applied to the UME coefficients (CELS-UME) and the SIMPLEC 
method7 (implemented in the recommended method whereby only one SIMPLEC iteration is 
performed for each new set of coefficients). For each of the three solution methods, the parameters 
associated with the iterative update of the linear equations were determined so as to minimize the 
computational effort at each method's optimal value of E .  The numerical experiments used to 
determine these parameters demonstrated that all three methods were about equally sensitive to 
departures from their optimal values. 

The sensitivity of the total computational effort, however, is a strong function of the major 
relaxation factor, E,  for all of the methods. The solution convergence rate is thus illustrated by 
plotting the total number of coefficient updates required to obtain convergence of all variables to 
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and the total computational effort to reach this convergence, as a function of E .  For these tests, 
was used. All computational times refer to calculations on a VAX 780 (no a vafue of E , , ~  = 

floating point accelerator) running VMS-FORTRAN. 

Cartesian test problem. The convergence behaviour of the Cartesian test problem depends 
strongly on the solution method and on the relaxation, E (Figure 7). At small E,  all three methods 
require approximately the same number of coefficient updates to satisfy the convergence criterion, 
E,,, (Figure 7A). For values of E in excess of 4, SIMPLEC experiences a sharp increase in the 
number of coefficient updates due to the poor treatment of the p-V coupling, whereas the CME- 
CELS and UME-CELS methods continue to converge rapidly. At this same value of E ,  the CME- 
CELS method begins to converge marginally faster than the UME-CELS method, owing to the 
improved treatment of the non-linear terms in the momentum equations. As a further indicator of 
the performance of CME-CELS, it is interesting to compare its convergence behaviour (requiring 
an average 7.8 cpu seconds per coefficient update) to the convergence behaviour of the direct linear 
solution of the CME set, the dashed line denoted CME-direct in Figure 7A (requiring an average 
243 cpu seconds per coefficient update). 

UME-CELS 
o CME-CELS 

-0 1 0 SIMPLEC 
CME - DIRECT 0 --- 

0- 
I 2 5 10 20 50 loo 

E 

A 

UME-CELS 
O CME-CELS 
D SIMPLEC 

B 
$ I I  I , I  
0 
V 0 

1 2  5 1 0 2 0 5 0 1 0 0  
E 

Figure 7. Convergence behaviour of the Cartesian test problem for various solution methods, measured in terms of the 
number of coeficient updates required (A), and the total computational effort required (B) for all variables to converge 

within E,,, = of their exact values versus the relaxation, E 



422 P. F. GALPIN AND G. D. RAITHBY 

The minimum computational effort required by each of the three methods is of the same order, 
with SIMPLEC requiring the greatest computational effort and CME-CELS the least effort 
(Figure 7B). 

Curvilinear test problem. The convergence behaviour of the curvilinear test problem is similar to 
that of the Cartesian test problem, only now the differences between the three methods are 
exaggerated (Figure 8). The p-V coupling breakdown occurs at a lower value of E (Figure 8A) for 
SIMPLEC, possibly aggravated by the poor linearization of the acceleration terms in this method. 
The CME-CELS and UME-CELS methods perform similarly for E < 5. For E > 5,  the UME- 
CELS method behaves poorly compared to CME-CELS. Clearly the Newton-Raphson treatment 
of the non-linear acceleration terms in this instance accelerate and stabilize convergence. For 
comparison purposes, the CME-direct method is also plotted in Figure 8A. Surprisingly, the 
CME-CELS method converges in fewer coefficient updates than the CME-direct method for 
E >  15. 

Similar observations can be made by examining the total computational effort required for 
each method as a function of E (Figure 8B). The minimum computational effort required by 
SIMPLEC and UME-CELS is very close, whereas the minimum effort of the CME-CELS method 
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Figure 8. Convergence behaviour of the curvilinear test problem for various solution methods, measured in terms of the 
number of coefficient updates required (A), and the total computational effort required (B) for all variables to converge 

within E,,, = of their exact values versus the relaxation, E 
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is significantly less. The differences in total computational effort between CME-CELS and UME- 
CELS at large values of E are due solely to the difference in treatment of the non-linear terms. The 
computational efficiency of the CELS method, further enhanced by solving the momentum 
equations linearized as in the CME set, constitutes a robust, and economical solution procedure. 

Summary of iterative solution results 

The CELS method applied to the UME set results in a satisfactory treatment of the p-V 
coupling and results in a method which is competitive with SIMPLEC, a state-of-the-art 
segregated method. This is consistent with the conclusions of a previous study.g When CELS is 
extended to the solution of the equation set that embodies full Newton-Raphson linearization, the 
CME set, the performance is only slightly enhanced for the Cartesian problem. For the curvilinear 
problem, use of the CELS solution of the CME set results in substantial savings. 

These findings are consistent with the results obtained for other test problems. 

CONCLUSIONS 

A study has been made to examine the degree of improvement of convergence rate that can be 
achieved using a Newton-Raphson linearization for all the non-linear terms in the general 
curvilinear equations of motion. A Newton-Raphson linearization for all the non-linear terms in 
the control-volume-based discrete momentum equations resulted in a coupled momentum 
equation set. 

The CME set was solved using a direct linear solution procedure to isolate the effect of the 
treatment of the non-linear terms on the convergence to the steady-state solution. It was found that 
solving the CME set accelerates the convergence rate and at the same time is less sensitive to the 
major relaxation parameter used to optimize the convergence rate. The Newton-Raphson 
linearization of the acceleration terms arising in curvilinear co-ordinates was demonstrated to 
have an important effect on the convergence rate. 

The CELS solution method was then extended to iteratively solve the proposed CME set. For 
the test problems analysed, the proposed combination of the Newton-Raphson linearizations and 
the CELS iterative linear solution method proved to be robust and computationally efficient, when 
compared to other current state-of-the-art solution methods. 
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NOMENCLATURE 

A;", A;", etc. 
A,, A,  
b 
B 
E relaxation factor 

coefficients of the discrete equations 
areas of the control volume faces denoted by subscript 
source term of a control volume applying along a given line 
source term for a control volume 
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Greek 

a 
P 
P 
0 1  1 9  0 1 2 9  0 
AS 
At 

Superscripts 

0 
* 
c, u, v 
u, v, p 

Acronyms 

CELS 
CME 

UME 

metrics in the x1 and x2 directions 
mass in a control volume 
pressure 
arc length in xl  direction 
source term in equation for variable denoted by subscript 
time 
velocity components in the x1 and x2 directions, respectively 
velocity vector 
volume of control volume 
curvilinear co-ordinate directions 

upwind weighting factor' 
viscosity of fluid 
density of fluid 
curvilinear fluid stresses 
arc length increment 
time increment 

geographic node point location with respect to control volume of interest 
geographic face point locations 

denotes variables at the end of the previous time step or iteration 
denotes most recent estimate of variable 
denotes equation in which the coefficient applies 
denotes the variable type which the coefficient multiplies 

Iterative linear solution method based on a coupled equation line solver 
Coupled momentum equation set that arises from a full Newton-Raphson 
linearization 
Uncoupled momentum equation set that arises when the standard incompres- 
sible linearization is adopted 

APPENDIX: LINEARIZED MOMENTUM EQUATION COEFFICIENTS 

For completeness, the coefficients of the u-momentum equation are given below, where all the non- 
linear inertial terms have been approximated using a Newton-Raphson linearization. The 
coefficients of equation (8) are thus 

A y U i + ' j +  A y u i - ' j + A y U i j - l  + A;'uuij-' + AE;;o,+'j+ A$&Uij 
+ A:;oi+ 'j- 1 + A;$uij- 1 + AUE'PPi+ ' j  + Aypi j  + B*,, 
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where 

AW 
ASlW 

A';;" = + 2kw(4 + a,) + p -, 

min (C, 0) u: 1 z A;; 
+[t- 

The v-momentum equation coefficients are exactly analogous to the u-momentum equation 
coefficients above. Complete details of the general orthogonal discrete method are available in 
Reference 12. 
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